

5. Hückel MO Theory for Conjugated Systems

Chang Woo Kim Computational Chemistry Group Department of Chemistry, JNU

Conjugated Hydrocarbons

Conjugated hydrocarbons have alternating single and double bonds in the Lewis structure.

The network of π -bonds leads to delocalization of electrons, which gives additional stability.

1,3-pentadiene (C₅H₈) $\Delta H_{\rm f,14}^{\circ} - \Delta H_{\rm f,13}^{\circ} = 31 \text{ kJ mol}^{-1}$

Types of Chemical Bonds in Hydrocarbons

 σ -bond

 π -bond

Types of Chemical Bonds in Hydrocarbons

Example: ethylene (C_2H_4)

 σ -bond network

 π -bond network

 $1s - 2p_z$: nonbonding

컴퓨터화학

Hückel Molecular Orbital Theory

Assumption: the property of the planar conjugated hydrocarbons will be mostly determined by $2p_z$ orbitals that forms a delocalized network.

Other orbitals are still important as they form the shape of the molecules.

Similar to what we did for H_2^+ , we calculate the molecular orbitals by applying variational principle to the atomic $2p_z$ orbitals.

Atomic orbitals

Molecular orbitals

전남대학교 화학과

컴퓨터화학

Ethylene

The secular equation for ethylene is

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} \\ H_{21} - ES_{21} & H_{22} - ES_{22} \end{vmatrix} = 0,$$

where the values of the integrals are

$$S_{11} = \int |\phi_1|^2 d\tau = 1, \quad S_{22} = \int |\phi_2|^2 d\tau = 1,$$

$$S_{12} = \int \phi_1^* \phi_2 d\tau \sim 0, \quad S_{21} = \int \phi_2^* \phi_1 d\tau \sim 0,$$

$$H_{11} = \int \phi_1^* \hat{H} \phi_1 d\tau = \alpha, \quad H_{22} = \int \phi_2^* \hat{H} \phi_2 d\tau = \alpha, \quad (\alpha > 0)$$

$$H_{12} = \int \phi_1^* \hat{H} \phi_2 d\tau = \beta, \quad H_{21} = \int \phi_2^* \hat{H} \phi_1 d\tau = \beta. \quad (\beta < 0)$$

Ethylene

전남대학교 화학과

As a result, the secular equation becomes

$$\begin{vmatrix} \alpha - E & \beta \\ \beta & \alpha - E \end{vmatrix} = 0,$$

and expanding the determinant and the solving for E gives two roots:

$$E_1 = \alpha + \beta, \quad E_2 = \alpha - \beta.$$

Inserting each root in the secular equation and solving the simultaneous equation

$$\begin{pmatrix} \alpha - E_n & \beta \\ \beta & \alpha - E_n \end{pmatrix} \begin{pmatrix} c_{n1} \\ c_{n2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

yields the coefficients for molecular orbitals.

In summary, the molecular orbital diagram for ethylene is as below:

 $E_{\pi,\mathrm{C}_{2}\mathrm{H}_{4}} = 2\alpha + 2\beta$

Butadiene

We assume that the integrals in the secular equation only become significant for self- and nearest-neighbor interactions,

$$S_{mn} = \int \phi_m^* \phi_n \, d\tau = \begin{cases} 1 & \text{if } m = n \\ 0 & \text{if } m \neq n \end{cases}$$
$$H_{mn} = \int \phi_m^* \hat{H} \phi_n \, d\tau = \begin{cases} \alpha & \text{if } m = n \\ \beta & \text{if } m \neq n, \text{ adjacent} \\ 0 & \text{if } m \neq n, \text{ non-adjacent} \end{cases}$$

전남대학교 화학과

컴퓨터화학

Butadiene

The secular equation becomes

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & H_{13} - ES_{13} & H_{14} - ES_{14} \\ H_{21} - ES_{21} & H_{22} - ES_{22} & H_{23} - ES_{23} & H_{24} - ES_{24} \\ H_{31} - ES_{31} & H_{32} - ES_{32} & H_{33} - ES_{33} & H_{34} - ES_{34} \\ H_{41} - ES_{41} & H_{42} - ES_{42} & H_{43} - ES_{43} & H_{44} - ES_{44} \end{vmatrix}$$
$$= \begin{vmatrix} \alpha - E & \beta & 0 & 0 \\ \beta & \alpha - E & \beta & 0 \\ 0 & \beta & \alpha - E & \beta \\ 0 & 0 & \beta & \alpha - E \end{vmatrix} = \beta^4 \begin{vmatrix} x & 1 & 0 & 0 \\ 1 & x & 1 & 0 \\ 0 & 1 & x & 1 \\ 0 & 0 & 1 & x \end{vmatrix} = 0,$$

where we have defined

$$x = \frac{\alpha - E}{\beta}.$$

컴퓨터화학

Butadiene

전남대학교 화학과

Expanding the matrix gives

$$x^4 - 3x^2 + 1 = 0,$$

which gives four roots

$$x = \pm \frac{\sqrt{5} + 1}{2} \sim \pm 1.618, \quad \pm \frac{\sqrt{5} - 1}{2} \sim \pm 0.618.$$

The molecular orbitals are

$$\begin{split} \psi_4 &\sim 0.37\phi_1 - 0.60\phi_2 + 0.60\phi_3 - 0.37\phi_4, & E_4 &\sim \alpha - 1.618\beta, \\ \psi_3 &\sim 0.60\phi_1 - 0.37\phi_2 - 0.37\phi_3 + 0.60\phi_4, & E_3 &\sim \alpha - 0.618\beta, \\ \psi_2 &\sim 0.60\phi_1 + 0.37\phi_2 - 0.37\phi_3 - 0.60\phi_4, & E_2 &\sim \alpha + 0.618\beta, \\ \psi_1 &\sim 0.37\phi_1 + 0.60\phi_2 + 0.60\phi_3 + 0.37\phi_4, & E_1 &\sim \alpha + 1.618\beta. \end{split}$$

Comparison to Experimental Observation

1,3-pentadiene

$$E_{1,3} \sim E_{\sigma} + E_{\pi,C_4H_6}$$
$$= E_{\sigma} + 4\alpha + 4.472\beta$$

1,4-pentadiene

 $E_{1,4} \sim E_{\sigma} + 2E_{\pi,C_2H_4}$ $= E_{\sigma} + 2(2\alpha + 2\beta)$ $= E_{\sigma} + 4\alpha + 4\beta$

 $E_{1,3} - E_{1,4} = 0.472\beta \sim 0.472 \times (-75 \text{ kJ mol}^{-1}) = -35 \text{ kJ mol}^{-1}$ $\Delta H_{f,13}^{\circ} - \Delta H_{f,14}^{\circ} = -31 \text{ kJ mol}^{-1} \text{ (experiment)}$

컴퓨터화학

Benzene

McQuarrie, D. A.; Simon, J. D. Physical Chemistry: a Molecular Approach, Ch. 10 15