1. Mathematics for Quantum Mechanics

Chang Woo Kim

Computational Chemistry Group
Department of Chemistry, JNU

전남대학교 화학과

Vector

A vector is a mathematical object which has both magnitude and direction.

To represent a vector, we put a right arrow (\rightarrow) on top of an alphabet to express its directionality.

In 1-dimension, the vector is indistinguishable from a scalar, as the direction can be specified by the sign of a number.

A vector does not change when shifted in space, as long as its direction and length remain constant.

Position Vector

An n-dimensional vector is assigned to a
unique point in the n-dimensional space
by putting its tail at the origin.
This assignment defines position vector.

The sum of the two vectors \vec{A} and \vec{B} can be calculated as the figure on the left.

The difference $\vec{A}-\vec{B}$ can be also calculated according to $\vec{A}+(-\vec{B})$.

전남대학교 화학과

Unit Vectors

The unit vectors $\mathbf{i}(\hat{i})$ and $\mathbf{j}(\hat{j})$ are defined as vectors of unit length along the directions of x - and y-axes, respectively.

We can represent any vectors in the $x y$-plane as

$$
\mathbf{A}=A_{x} \mathbf{i}+A_{y} \mathbf{j} \quad \rightarrow \quad\left(A_{x}, A_{y}\right)
$$

The coefficients A_{x} and A_{y} are called as x - and y-components, respectively.

$$
\begin{array}{rll}
a \mathbf{A}=\left(a A_{x}\right) \mathbf{i}+\left(a A_{y}\right) \mathbf{j} & \rightarrow & \left(a A_{x}, a A_{y}\right) \\
\mathbf{A}+\mathbf{B}=\left(A_{x}+B_{x}\right) \mathbf{i}+\left(A_{y}+B_{y}\right) \mathbf{j} & \rightarrow & \left(A_{x}+B_{x}, A_{y}+B_{y}\right) \\
\mathbf{A}-\mathbf{B}=\left(A_{x}-B_{x}\right) \mathbf{i}+\left(A_{y}-B_{y}\right) \mathbf{j} & \rightarrow & \left(A_{x}-B_{x}, A_{y}-B_{y}\right)
\end{array}
$$

Scalar Product of Two Vectors

The scalar product (inner product, dot product) of the two vectors A and \mathbf{B} is represented as $\mathbf{A} \cdot \mathbf{B}$ and calculated as

$$
\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}| \cos \alpha
$$

where $|\mathbf{A}|$ is the size of the vector \mathbf{A} and α is the angle between \mathbf{A} and \mathbf{B}.

$$
|\mathbf{A}|=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

When the two vectors are parallel:
antiparallel:
perpendicular (orthogonal):
$\mathbf{A} \cdot \mathbf{B}=|\mathbf{A}||\mathbf{B}|$
$\mathbf{A} \cdot \mathbf{B}=-|\mathbf{A}||\mathbf{B}|$
$\mathbf{A} \cdot \mathbf{B}=0$

Scalar Product of Two Vectors

The scalar product can be also expressed by the components of the position vectors,

$$
\begin{aligned}
\mathbf{A} \cdot \mathbf{B} & =\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}\right) \\
& =A_{x} B_{x}(\mathbf{i} \cdot \mathbf{i})+A_{x} B_{y}(\mathbf{i} \cdot \mathbf{j})+A_{y} B_{x}(\mathbf{j} \cdot \mathbf{i})+A_{y} B_{y}(\mathbf{j} \cdot \mathbf{j}) \\
& =A_{x} B_{x}+A_{y} B_{y},
\end{aligned}
$$

which can be straightforwardly extended to arbitrary numbers of dimensions,

$$
\mathbf{A} \cdot \mathbf{B}=\left(\sum_{j=1}^{N} A_{j} \mathbf{e}_{j}\right) \cdot\left(\sum_{k=1}^{N} B_{k} \mathbf{e}_{k}\right)=\sum_{j=1}^{N} \sum_{k=1}^{N} A_{j} B_{k} \delta_{j k}=\sum_{j=1}^{N} A_{j} B_{j},
$$

where $\left\{\mathbf{e}_{j}\right\}$ is a set of orthonormal unit vectors.

Scalar Product of Complex Vectors

Vectors can generally have complex components.
In such cases, the inner product between vectors \mathbf{A} and \mathbf{B} is defined as

$$
\mathbf{A}^{*} \cdot \mathbf{B}=\left(\sum_{j=1}^{N} A_{j}^{*} \mathbf{e}_{j}\right) \cdot\left(\sum_{k=1}^{N} B_{k} \mathbf{e}_{k}\right)=\sum_{j=1}^{N} A_{j}^{*} B_{j} .
$$

According to this definition, the inner product of a vector to itself is still equal to its length (norm),

$$
\mathbf{A}^{*} \cdot \mathbf{A}=\sum_{j=1}^{N} A_{j}^{*} A_{j}=\sum_{j=1}^{N}\left|A_{j}\right|^{2}=|\mathbf{A}|^{2}
$$

Matrix

A matrix is a list of quantities arranged in rows and columns.

$$
\mathbf{A}=\left(\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & \cdots & A_{1 n} \\
A_{21} & A_{22} & A_{23} & \cdots & A_{2 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & A_{m 3} & \cdots & A_{m n}
\end{array}\right)
$$

The numbers $\left\{A_{m n}\right\}$ are called matrix elements.
A matrix with m rows and n columns is called m-by-n matrix.
If $m=n$, the matrix is called a square matrix.
A single row and column are often called row vector and column vector, respectively, as they can be thought as one-dimensional arrays.

Matrix Algebra

A matrix is equal to another matrix if

- the number of rows and columns for the two matrices are identical,
- and all corresponding elements of the two matrices are also equal.

For two matrices

$$
\mathbf{A}=\left(\begin{array}{ccc}
A_{11} & \cdots & A_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1} & \cdots & A_{m n}
\end{array}\right) \quad \text { and } \quad \mathbf{B}=\left(\begin{array}{ccc}
B_{11} & \cdots & B_{1 n} \\
\vdots & \ddots & \vdots \\
B_{m 1} & \cdots & B_{m n}
\end{array}\right)
$$

the addition and scalar multiplication is defined as

$$
\mathbf{A}+\mathbf{B}=\left(\begin{array}{ccc}
A_{11}+B_{11} & \cdots & A_{1 n}+B_{1 n} \\
\vdots & \ddots & \vdots \\
A_{m 1}+B_{m 1} & \cdots & A_{m n}+B_{m n}
\end{array}\right) \quad \text { and } c \mathbf{A}=\left(\begin{array}{ccc}
c A_{11} & \cdots & c A_{1 n} \\
\vdots & \ddots & \vdots \\
c A_{m 1} & \cdots & c A_{m n}
\end{array}\right)
$$

Matrix Algebra

The elements of the product matrix $\mathbf{C}=\mathbf{A B}$ is defined as

$$
C_{m n}=\sum_{k} A_{m k} B_{k n}
$$

ex)

$$
\begin{array}{ll}
\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
2 & 1
\end{array}\right)=? & \text { answer: }\left(\begin{array}{cc}
1 \times 0+2 \times 2 & 1 \times 1+2 \times 1 \\
0 \times 0+1 \times 2 & 0 \times 1+1 \times 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 3 \\
2 & 1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & 1 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
3 \\
1
\end{array}\right)=? & \text { answer: }\left(\begin{array}{c}
1 \times 0+0 \times 3+2 \times 1 \\
0 \times 0+(-1) \times 3+1 \times 1 \\
0 \times 0+0 \times 3+1 \times 1
\end{array}\right)=\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)
\end{array}
$$

By definition, the multiplication can be only defined if the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B}.

Matrix Algebra

Square matrices can be multiplied in any order, but they do not necessarily commute:

$$
\mathbf{A B} \neq \mathbf{B A} .
$$

Other than that, the matrix multiplication satisfies associativity and distributivity like scalars.

$$
\begin{aligned}
(\mathbf{A B}) \mathbf{C} & =\mathbf{A}(\mathbf{B C}), \\
\mathbf{A}(\mathbf{B}+\mathbf{C}) & =\mathbf{A B}+\mathbf{A C} .
\end{aligned}
$$

Example:

$$
\mathbf{A}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Determinant

A square matrix \mathbf{A} has a determinant $\operatorname{det}(\mathbf{A})$ which is a scalar.
For a 2-by-2 matrix, the determinant is

$$
\mathbf{A}=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \quad \rightarrow \quad \operatorname{det}(\mathbf{A})=\left|\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right|=A_{11} A_{22}-A_{12} A_{21} .
$$

For higher-dimensional matrices, the determinants can be calculated by expansion by minors:

$$
\begin{aligned}
\left|\begin{array}{ccc}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right| & =A_{11}\left|\begin{array}{ll}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{array}\right|-A_{12}\left|\begin{array}{ll}
A_{21} & A_{23} \\
A_{31} & A_{33}
\end{array}\right|+A_{13}\left|\begin{array}{ll}
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right| \\
& =A_{11} A_{22} A_{33}-A_{11} A_{32} A_{23}-A_{12} A_{21} A_{33} \\
& +A_{12} A_{31} A_{23}+A_{13} A_{21} A_{32}-A_{13} A_{31} A_{22} .
\end{aligned}
$$

전남대학교 화학과

Determinant

ex) Calculate the determinant
$\left|\begin{array}{ccc}1 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right|$.

Linear Homogeneous Equations

Consider a set of linear simultaneous equation,

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=0 \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=0 \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=0 \\
& \text { s apparent that we have } \\
& \qquad x_{1}=x_{2}=x_{3}=0
\end{aligned} \quad\left(\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right.
$$

$$
x_{1}=x_{2}=x_{3}=0
$$

as a solution of the problem, which is called the trivial solution. However, such a simple solution is usually not very interesting.

The condition for solutions other than trivial solution (nontrivial solution) is $\operatorname{det}(\mathbf{A})=0$.

Linear Homogeneous Equations

ex)

$$
\text { a. } \begin{aligned}
& 4 x+5 y=0 \\
& 6 x+8 y=0 . \\
&\left(\begin{array}{ll}
4 & 5 \\
6 & 8
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
& \mathbf{A} \quad \mathbf{x}
\end{aligned}
$$

b. $\quad 3 x+4 y=0$, $6 x+8 y=0$.

$$
\begin{gathered}
\left(\begin{array}{ll}
3 & 4 \\
6 & 8
\end{array}\right)\binom{x}{y}=\binom{0}{0} \\
\mathbf{A} \quad \mathbf{x}
\end{gathered}
$$

$$
\operatorname{det}(\mathbf{A})=4 \times 8-5 \times 6=2
$$

$$
\operatorname{det}(\mathbf{A})=3 \times 8-4 \times 6=0
$$

전남대학교 화학과

Identity Matrix

An identity matrix I is a square matrix which satisfies

$$
\mathbf{I} \mathbf{A}=\mathbf{A I}=\mathbf{A}
$$

and takes the form of

$$
\mathbf{I}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

The elements can be summarized by using Kronecker delta $\delta_{i j}$,

$$
I_{i j}=\delta_{i j}= \begin{cases}1, & i=j \\ 0, & i \neq j\end{cases}
$$

Inverse Matrix

For a square matrix \mathbf{A}, its inverse matrix \mathbf{A}^{-1} satisfies

$$
\mathbf{A} \mathbf{A}^{-1}=\mathbf{A}^{-1} \mathbf{A}=\mathbf{I}
$$

The condition for the existence of an inverse matrix is $\operatorname{det}(\mathbf{A}) \neq 0$.
If the inverse exist, its elements $\left\{A^{-1}\right\}_{i j}$ satisfy a set of simultaneous equations

$$
\sum_{k=1}^{n} A_{i k}\left(A^{-1}\right)_{k j}=\delta_{i j}
$$

which can be solved since the number of equations are equal to the number of unknowns.

Gauss-Jordan elimination: a systematic way to calculate the inverse

Matrix Terminologies

The trace of a matrix is the sum of its diagonal elements,

$$
\operatorname{Tr}(A)=\sum_{i=1}^{n} A_{i i} .
$$

An upper (lower) triangular matrix is a matrix with all the elements below (above) the diagonal are zero.

$$
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & 3 \\
0 & 1 & -1 \\
0 & 0 & 2
\end{array}\right), \quad \mathbf{B}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
1 & -1 & 0 \\
2 & 2 & -2
\end{array}\right)
$$

If all elements of a matrix is zero, such a matrix is called null matrix or zero matrix.

전남대학교 화학과

Matrix Terminologies

The transpose \mathbf{A}^{T} of a matrix \mathbf{A} is obtained by swapping the index of the column and row of all matrix elements.

$$
\begin{gathered}
A_{i j}^{\mathrm{T}}=A_{j i}, \\
\mathbf{A}=\left(\begin{array}{ccc}
1 & 2 & 1+2 i \\
-2 & i & -1 \\
1 & 4 & 2
\end{array}\right) \quad \rightarrow \quad \mathbf{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & i & 4 \\
1+2 i & -1 & 2
\end{array}\right) .
\end{gathered}
$$

The Hermitian transpose \mathbf{A}^{\dagger} of a matrix \mathbf{A} is obtained by taking the complex conjugate of the matrix and transposing it.

$$
\mathbf{A}^{\dagger}=\left(\mathbf{A}^{\mathrm{T}}\right)^{*}=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & -i & 4 \\
1-2 i & -1 & 2
\end{array}\right)
$$

Matrix Terminologies

If a matrix is equal to its transpose ($\mathbf{A}^{\mathrm{T}}=\mathbf{A}$), it is called a symmetric matrix.

If a matrix is equal to its Hermitian transpose ($\mathbf{A}^{\dagger}=\mathbf{A}$), it is called a Hermitian matrix.

If the inverse of a matrix is equal to its transpose ($\mathbf{A}^{-1}=\mathbf{A}^{T}$), such a matrix is called an orthogonal matrix.

If the inverse of a matrix is equal to its Hermitian transpose ($\mathbf{A}^{-1}=\mathbf{A}^{\dagger}$), such a matrix is called a unitary matrix.

전남대학교 화학과

Unitary Transformation

$$
\begin{aligned}
\vec{r} & \rightarrow\binom{r \cos \theta_{1}}{r \sin \theta_{1}} \\
& =\binom{r \cos \theta_{2}}{r \sin \theta_{2}}=\binom{r \cos \left(\theta_{1}-\alpha\right)}{r \sin \left(\theta_{1}-\alpha\right)} \\
& =\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{r \cos \theta_{1}}{r \sin \theta_{1}}
\end{aligned}
$$

When the coordinate axes undergo a rotation, the components of a position vector is transformed according to

$$
\vec{r}_{2}=\mathbf{U}^{\dagger} \vec{r}_{1},
$$

where \vec{r}_{1} and \vec{r}_{2} are the position vectors in each coordinate system and \mathbf{U}^{\dagger} is (the Hermitian transpose of) a unitary matrix.

Unitary Transformation

As the position vectors undergo unitary transformation under the rotation of the coordinates, so do the matrices.
To observe this, we consider a scalar quantity

$$
C=\vec{a}^{\dagger} \mathbf{M} \vec{b}
$$

where \vec{a} and \vec{b} are column vector of length N and \mathbf{M} is an $N \times N$ square matrix.
Now we insert two identities $\mathbf{I}=\mathbf{U U}^{\dagger}$ and regroup the terms:

$$
\begin{aligned}
C & =\vec{a}^{\dagger} \mathbf{U} \mathbf{U}^{\dagger} \mathbf{M} \mathbf{U U}^{\dagger} \vec{b}=\left(\vec{a}^{\dagger} \mathbf{U}\right)\left(\mathbf{U}^{\dagger} \mathbf{M U}\right)\left(\mathbf{U}^{\dagger} \vec{b}\right) \\
& =\left(\vec{a}^{\prime}\right)^{\dagger} \mathbf{M}^{\prime} \vec{b}^{\prime},
\end{aligned}
$$

so that $\vec{a}^{\prime}, \vec{b}^{\prime}$, and $\mathbf{M}^{\prime}=\mathbf{U}^{\dagger} \mathbf{M U}$ are transformed vectors and matrix.

전남대학교 화학과

Matrix Eigenvalues and Eigenvectors

For a square matrix \mathbf{A}, if there are vectors which satisfy

$$
\mathbf{A} \mathbf{x}_{k}=\lambda_{k} \mathbf{x}_{k}
$$

such vectors $\left\{\mathbf{x}_{k}\right\}$ and coefficients $\left\{\lambda_{k}\right\}$ are called eigenvectors and eigenvalues, which can be found by solving

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

The condition for nontrivial solutions is

$$
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0
$$

Solving this equation gives the eigenvalues, which can be inserted in $\mathbf{A x}_{k}=\lambda_{k} \mathbf{x}_{k}$ one-by-one to find the corresponding eigenvectors.

Matrix Eigenvalues and Eigenvectors

ex) Find the eigenvalues and eigenvectors of $\left(\begin{array}{ll}0 & V \\ V & 0\end{array}\right)$.

Matrix Diagonalization

Suppose we have found eigenvalues $\left\{\lambda_{k}\right\}$ and eigenvectors $\left\{\mathbf{x}_{k}\right\}$ of a Hermitian 3-by-3 matrix A:

$$
\mathbf{A x}_{k}=\lambda_{k} \mathbf{x}_{k}, \quad k=1,2,3 .
$$

If we construct a square matrix \mathbf{X} by using normalized $\left\{\mathbf{x}_{k}\right\}$ as its columns,

$$
\mathbf{X}=\left(\begin{array}{lll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right),
$$

\mathbf{X} is a unitary matrix:
$\mathbf{X}^{\dagger} \mathbf{X}=\left(\begin{array}{l}\mathbf{x}_{1}^{\dagger} \\ \mathbf{x}_{2}^{\dagger} \\ \mathbf{x}_{3}^{\dagger}\end{array}\right)\left(\begin{array}{lll}\mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right)=\left(\begin{array}{lll}\mathbf{x}_{1}^{*} \cdot \mathbf{x}_{1} & \mathbf{x}_{1}^{*} \cdot \mathbf{x}_{2} & \mathbf{x}_{1}^{*} \cdot \mathbf{x}_{3} \\ \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{1} & \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{2} & \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{3} \\ \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{1} & \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{2} & \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{3}\end{array}\right)=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$.

전남대학교 화학과

Matrix Diagonalization

We also have

$$
\mathbf{A X}=\left(\begin{array}{lll}
\mathbf{A x}_{1} & \mathbf{A x} & \mathbf{A} \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\lambda_{1} \mathbf{x}_{1} & \lambda_{2} \mathbf{x}_{2} & \lambda_{3} \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{lll}
\lambda_{1} x_{11} & \lambda_{2} x_{12} & \lambda_{3} x_{13} \\
\lambda_{1} x_{21} & \lambda_{2} x_{22} & \lambda_{3} x_{23} \\
\lambda_{1} x_{31} & \lambda_{2} x_{32} & \lambda_{3} x_{33}
\end{array}\right) .
$$

Which leads to

$$
\mathbf{X}^{\dagger} \mathbf{A} \mathbf{X}=\left(\begin{array}{lll}
\lambda_{1} \mathbf{x}_{1}^{*} \cdot \mathbf{x}_{1} & \lambda_{2} \mathbf{x}_{1}^{*} \cdot \mathbf{x}_{2} & \lambda_{3} \mathbf{x}_{1}^{*} \cdot \mathbf{x}_{3} \\
\lambda_{1} \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{1} & \lambda_{2} \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{2} & \lambda_{3} \mathbf{x}_{2}^{*} \cdot \mathbf{x}_{3} \\
\lambda_{1} \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{1} & \lambda_{2} \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{2} & \lambda_{3} \mathbf{x}_{3}^{*} \cdot \mathbf{x}_{3}
\end{array}\right)=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right)=\mathbf{D}
$$

A matrix which has nonzero elements only on its diagonal (such as D) is called diagonal matrix.
Finding a unitary transform for making diagonal matrix is called diagonalization, which is only possible for symmetric matrix.

Matrix Diagonalization

A diagonal matrix satisfies

$$
\mathbf{D}=\left(\begin{array}{ccc}
\lambda_{1} & 0 & \cdots \\
0 & \lambda_{2} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \quad \rightarrow \quad \mathbf{D}^{n}=\left(\begin{array}{ccc}
\lambda_{1}^{n} & 0 & \cdots \\
0 & \lambda_{2}^{n} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) .
$$

This relation can be used to evaluate the powers of a diagonalizable symmetric matrix:

$$
\begin{gathered}
\mathbf{D}=\mathbf{X}^{\dagger} \mathbf{A X} \quad \rightarrow \quad \mathbf{A}=\mathbf{X D X}^{\dagger}, \\
\mathbf{A}^{n}=\mathbf{X D}^{n} \mathbf{X}^{\dagger}=\mathbf{X}\left(\begin{array}{ccc}
\lambda_{1}^{n} & 0 & \cdots \\
0 & \lambda_{2}^{n} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \mathbf{X}^{\dagger} .
\end{gathered}
$$

Matrix Diagonalization

The formula in the previous slide can be used to define the exponential of a diagonalizable symmetric matrix.
Based on the Taylor expansion of e^{x}, we can derive

$$
\begin{aligned}
e^{\mathbf{A}} & =\sum_{j=0}^{\infty} \frac{\mathbf{A}^{j}}{j!}=\mathbf{X}\left(\sum_{j=0}^{\infty} \mathbf{D}^{j}\right) \mathbf{X}^{\dagger} \\
& =\mathbf{X}\left(\begin{array}{ccc}
e^{\lambda_{1}} & 0 & \cdots \\
0 & e^{\lambda_{2}} & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right) \mathbf{X}^{\dagger},
\end{aligned}
$$

which is used as the most basic method for solving the Schrödinger equation.

